The OS-PT-10 Automatic tracking system has been designed to provide GPS based positioning of high-gain antenna systems to support realtime airborne video and telemetry transmission requirements.

The OS-PT-10 system is based on a heavy duty rugged Pan and Tilt pedestal originally designed for underwater operation. The pedestal provides 10 lb-ft (13.56 N-m) of output torque on each axis. Heavy-duty ball bearings supporting the output shaft allow it to accommodate heavy payloads up to 25 lbs (11.3 kg).

Each axis includes a DC brushless stepper motor coupled to very low backlash harmonic gearing. It is designed to allow stalling of the output shafts without damage to the gears, the motors, or control electronics.

The system utilizes a RS-485 communications protocol. Using RS-485 control provides several advantages over RS-232. RS-485 allows communication over longer lengths of cable (1000 feet) and enables the ability for networking multiple nodes.

One cable assembly with a total of four wires (two for power; two for communication) is required to operate the RS-485 / RS-232 tracking system. The system is delivered complete with cable assembly, power supply, Hercules heavy duty tripod, and a RS-232 to RS-485 to USB converter.

The OS-PT-10 may be fitted with a variety of antennas depending on the frequency of operation, polarity, and gain requirements of the system. Up to 24” Large RHCP dishes, high-gain omni for diversity receive, and Yagi or Patch antennas for data comms, can easily be mounted.

The OS-PT-10 pan and tilt pedestal are air-filled and are excellent for above water applications where rain, humidity, and dust are issues.

The Automatic tracking system has been fully integrated with a Piccolo flight control system from Cloud Cap Technology (CCT) and FlighTEK from L3 Communication Geneva Aerospace. The tracking system operates directly from Piccolo Command Center, MissionTEK as well as OS standalone antenna tracker software.
OS-PT-10
GPS Automatic Tracking Pedestal

PERFORMANCE
Power:
- Operating Range: 24 - 28 VDC, 1.7 amps (max) per axis @ 24 VDC
- Braking Mode: 24 VDC, adjustable, 0 mA to 1.2 amps per axis
- At Rest (not braking): < 100 mA per axis
- Rotation Speed (160:1 gears): Variable, 0.5 to 10 degrees/second
- Scan Range (Azimuth): 0 to 360 degrees
- Scan Range (Elevation): -10 to 130 degrees
- Resolution: +/- 0.5 degrees (30 arc minutes)
- Control protocol: RS-485, 2-wire half duplex, 8 bit data, 1 stop bit, no parity, no hardware flow control
- Networkability: Up to 32 RS-485 nodes sharing the same cable for power and communication

MECHANICAL
Housing:
- Material: Anodized 6061-T6 Aluminum
- Height: 236 mm (9.30 in)
- Width: 179 mm (7.05 in)
- Main Body Diameter: 74.9 mm (2.95 in)
- Output Shaft Diameter: 25.4.1 mm (1.00 in)

Weight:
- Air-filled: 3.7 kg (8.2 lbs)
- Standard Connectors: LPMBH-4-MP
- Housing Mounting: Four 1/4-20 threaded holes in output pan shaft
- Antenna Mounting: Mounting plate, yoke and optional YAGI brackets

Tripod options:
- QuickSet : Hercules model 4-53021-8; Samson 4-7310-7b

ENVIRONMENTAL
- Operating Temperature: -10°C to +50°C (-14°F to 122°F)
- Storage Temperature: -20°C to +60°C (-4°F to 140°F)
SOFTWARE
- Compatible with Cloud Cap Technology Antenna Plugin software
- Fully integrated with L3 communication Geneva Aerospace MissionTEK software.
- Standalone Antenna Tracker software:
The positioner GPS coordinates on the ground can be provided by:
 a) Any GPS receiver that delivers the positioner position on the ground using NMEA 0183 format through a serial port.
 b) A GPS coordinates distributed through Cloud Cap Technology’s Piccolo Command Center or Operator Interface (OI) IP server.
 c) Fixed values of latitude, longitude and altitude MSL entered by the operator
The Aircraft GPS coordinate can be provided by:
 a) Any GPS receiver that delivers the aircraft position on the ground using NMEA 0183 format through a serial port.
 b) The aircraft’ GPS coordinates distributed through Cloud Cap Technology’s Piccolo Command Center or Operator Interface IP server.
 c) The aircraft’ GPS coordinates using NMEA 0183 format distributed through ports UDP socket